Novel Machine Learning (ML) Algorithms to Classify IPv6 Network Traffic in Resource-Limited Systems

نویسندگان

چکیده

Providing machine learning (ML) based security in heterogeneous IoT networks including resource-constrained devices is a challenge because of the fact that conventional ML algorithms require heavy computations. Therefore, this paper, lightweight ProtoNN, CMSIS-NN, and Bonsai tree were evaluated by using performance metrics such as testing accuracy, precision, F1 score recall to test their classification ability on IPv6 network dataset generated resource-scarce embedded devices. The algorithm provided best results all (98.8 98.9% score, 99.2% 98.8% recall) compared CMSIS-NN algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

A statistical approach to classify Skype traffic

Abstract- Skype is one of the most powerful and high-quality chat tools that allows its users to use of many services such as: transferring audio, sending messages, video conferencing and audio for free. Skype traffic has a lot of Internet traffic. Hence, Internet service providers need to identify traffic to do the quality of service and network management. On the other hand, Skype developers ...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Machine Learning Classification of Malicious Network Traffic

1.1. Intrusion Detection Systems. In our society, information systems are everywhere. They are used by corporations to store proprietary and other sensitive data, by families to store financial and personal information, by universities to keep research data and ideas, and by governments to store defense and security information. It is very important that the information systems that house this ...

متن کامل

Analyzing Sorting Algorithms in Resource Aware ML

Software development sometimes requires to statically predict the quantity of resources—such as memory and time—that is needed to execute a program. The difficulties of manual resource analysis led to extensive research on automatic methods for quantitative resource analysis. Recently we developed an automatic amortized analysis to compute polynomial resource bounds for first-order functional p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bilgisayar bilimleri

سال: 2022

ISSN: ['2548-1304']

DOI: https://doi.org/10.53070/bbd.1172706